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.-\bstract-B'IS<:U on th<: b,)unuary d<:m<:nt <:4uatlon approaL:h for L:raL:k op<:ning uisplaL:<:m<:nts. an
e4ualion of th<: perlurbati,)n type is ueriwu giving an <:,plieil rdati,)n between the eraL:k front
variatilln anu the resulting variation in the stress intensity faL:tor. By using thiS c4uatil1n. the L:raL:k
front auvanL:e L:an be preuiL:teu at eaL:h sl<:p of L:raL:k growth whik ensuring that the fraL:ture L:riterion
is satisti<:u fl1r the new L:raL:k gel)rnetry. As an nample. the pwbkm llf the growth unu<:r a Duguale
type n1l1ud fllr L:raL:ks of dliptiL:al anu L:irL:ular shapes with unIform anu linear variatilln of l<:nsik
I"ads is solved and the numeriL:al results are diSL:ussed.

I;\iTRO[)lICTIO:"

For thn:t.:-dinH:nsional crack prohlt:ms. most analytic;d drorts havt.: ht.:t.:n conct.:rnt.:d with
stationary cracks. wht.:rt.: tht.: geometry of the crack and the loading conditions arc givt.:n.
Various analytical and numerical methods have heen devdoped to solve such stationary
crack prohlt:ms to determine the crack opening displacement and the stress intensity factor
along the crack front.

Ilowever. anotht.:r class of prohlt:ms. crack growth. although of practical intt.:n:st in
many tieltls. has not heen addressed in a systematic way. The stationary crack problt:ms
helong to the traditional dirt.:ct problt:ms of mechanics in which the gt.:ometry is known (/
{,riori. Crack growth problt:ms on the other hand have tlH: feature that the geometry of the
crack is not given and must be determined through the solution procedurt.:. The only
rel(uirt.:ment for the determination of the new crack front aftt.:r growth is that the fracture
criterion. which is directly related to the stress intt.:nsity factor. be satisfied.

This e1ass of problt:ms was addressed previously hy using an iteration approach
(Mastrojannis c( (// .• ILJXO; Lee and Keer. ILJX6. and others). At each step the crack advanL"e
was determined by adopting an wI/we fatigue crack growth law analogous to the Paris
law. The iteration continued until an equilibrium crack front was found. This method.
although pragmatic. is not satisfactory for the following reason: although the fracture
criterion is satisfied for the final geometry of tht: crack. it may be violatt.:d during tht:
iteration procedun: and hence the searching proct:ss may contain error and not rt:prest.:nt
tht: actual growth process of tht: cral'k and the eonvt:rgenct: in general is not guaranteed.
Recent t:xamplt:s of applications of this approach appt:ar in tht: work of Gao and Rice
(ILJX9) and Fart:s (ILJXLJ).

In n:cent ycars Rict: (ILJX5. ILJX7j and Gao and Rice (19S6. 19H7) han: developed;1
theory for calculating dirt:ctly the lirst order v;lriation in crack opt:ning displacement and
stress intensity faL"tor due to small changes in crack geometry. Bower and Orti!. (1990)
extendt:d this first order pt.:rturhation scht:l1lt: to arbitrarily large variations of crack gt:om
etries. By rt.:peatl.:d slllall perturbations applied to some initial geometry. results for cracks
of arbitrary shapes WI:rc derivcd. i\ number of crack growth problems of interest ha\e
been solved hy this Illl.:thod (Bo\\w and Orti!.. 1990: Li and Keer. 1992). Howl.:ver, thert:
arc sl.:vert.: restrictions to tht: application of this approach to general crack growth prohlems.
Due to the strong singularity contained in thl.: integral in the basic t:quations. the mt:thod
can only be applied to cracks in a homogeneous medium with uniform loading conditions.

For solving general crack growth prohlems. it is necessary to develop equations to
which a perturbation approach can give an explicit relation between the crack front variation
and the resulting changes in the stress intensity factor. Then. it becomes possihle to



:\. LI .lnJ L \1. KEFI'.

determine the crack front advance which will result in a given variation of stress intensIty
factor such that the fracture criterion is satistled at each new crack front.

[n this paper it is shown how to derive such equations from the boundary Integral
equation, which is originally developed tl) solve for the crack opening displacement and thl.."
stress intensity factor and in the present analysis is uSl.."d to solve crack gro\\ th probkms.
It is interesting to note that the concept of deriving the relation bL'tween thl' lTack gwwth
and the resulting changes in the stress intensity factor from thl.." curresponding intl.."gral
equatiun tlrst appeared in the papers of :"emat-Nas~cr('I u!. (1l)7:\) and K..:..:r c[ u!. i 197:-:)

fur two-dimensional crack growth problems r..:lated to th..: st~lhihty of interacting cr~lcks.

The quantiti..:s in th..: int..:gral equations are \iew..:d as the functions of th..: crack kngths By
dilrerentiation, the equation fln the deri\ati,,:s uf the strl.."ss inten~ity fallor \\ ith n,:sp":ll to
th..: crack lengths are ubtainl.."d and th..: probkm of th..: stahility "I' th..: cr~lck gnl\\ th I,

address..:d. for the thn:e-dim..:nsional prohlems considaed in this paper, the Cl)..:tfIci..:nh. as
well as the solution of the boundary Int..:gral ..:quation. d..:pend UPlHl the shap..: ()f the LT~ICk

By ditfen:ntiation with respect to the po..;itions of th..: nl)dal points on the crack frlHH, a
perturbation typ..: relation can he lkri\l'll hl'twc,'n the nodal pl)int dispLlixn1l'nt and thL'
variation of th..: stress int..:nsity f~lct\)r

As an applic~ltionofthl"; rn..:tlwd, th..: gn)\vth ofth..: yi..:ld Ion..: llfa DUglLik-typ..: LTaL'k
of circularshap..: unda linear variation of load as well ~IS ()f elliptical sh~lpes ulllkr unifl)rrn
load ~Ire solved.

[-'01'/11 II la1iOIl

Consider rl~ln~II' cracks subjected to knsile force..; winch induce a mode I stress intenSity
Llct,lr around thc n;lck front. For statil1nary cr~lck problems with the crack opening
displacement All as thL: unknown function. ~I suitahk houndary intL:gral L:quation, ddined
on the er;lck facL:s, ,';111 be established in the fOrlll

(I)

wh..:rL: K(x . .',,) is the kL:rnd function and l' is the normal pressurL: on th..: LTaek fac..:s ..-\fter
putting eqn (1) into a discrete form hy a propL:r nUl11erical schL:mL:, it is r..:ducL:d to th..:
following set of algebraiL: ..:quations:

11,/"11, = - /", i = 1,2, ... , .Y, (2)

whL:re /" is thL: prL:ssurL: at the collocation point X,: II" = L, K(r, rJIl·(.,) d.-l. H..:r..:,:.'1, IS

the jth subdomain (clement) of the crack faces and 1I'(r) is the WL:ight function which
dL:scribes thL: variation of t..11 within L:adl clement:

Two types of L:lelllL:nts arc distinguishL:J as follows: the inside L:!emL:nt amI thL: CfaL:k
front elemL:nt: the latter has an eJge or vertex that lies on the L:rack front. AftL:r solving
t..11 from eqn (2) the stress intensity factor K is calculated from the crack opening dis
placement of the crack front elements by thL: known rdation :

"+(1-1') .
t..1I(.'0) = Lllill'(r o ) = Iv. ..../ 1: 0 ,

...../2Tr!1

where Co is thc distancL: of point XI) from the crack front. To obtain an accurate result of
the stress intensity factor the asymptotic behavior of Llll near the crack front as shovin by
the right side ofeqn (4) should be incorporated into the expression for the weight function.

With a continuous increase in the applied load, the stress intensity factor at some
points along the crack front will cventually reach a critical valuc. thc fracture toughness of
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the material. such that any further increment in the load will force the crack to grow. The
change of the crack geometry after growth is specified by the crack front displacement.
which will cause a perturbation to eqn (I) with the form :

J fK(x. XI))~II(x)dA(x) = - Jp(Xo). (5)

Now the same discretization scheme which is applied to eqn (I) to obtain eqn (2) is used.
The crack face is divided into N elements and the function of the crack face opening
displacement is approximated by the piecewise function ~tl!II'(.t). j = I. 2..... .\". Eq uation
(5) is then reduced to the following discrete form:

or

i {~tl!f K(x. X,)II'(X) dA ] = - Jp(x,). i = I. 2..... N
i= I j,

(6)

(7)

where higher order terms such as MI,,()tJ.tl, are neglected.
For a given approximation scheme the crack front is totally determined by the position

of nodal points along the crack front. Consequently fon:rack growth prohlems. the variation
of the LTad geometry during crack growth is specilied hy the displacements of the nodes
on the crack front. In the sequel /)1/, will he used to denote the displacement of thejth front
node along the direction normal to the crack front. Equation (7) can then be written as

(S)

In the above equation the summation over j is from I to N and the summation over fII is
from I to AI, where AI is the total number of frontal nodes. The term (DH,! iJJam )6a", is
caleulated as

(9)

where x'" = (x"" Y",) is the position vector of the mth crack front node and 11m = (n ,"'. n",,)
is the normal to the crack front at that point. When the crack front is approximated by a
polygon. the normal to the crack front at the mth node is taken as the normal to a parabola
titling through the filth node and the two adjacent nodes. From eqn (9) the operator iJ;'2r5a",
will be understood in the sequel as

iJ D iJ
... , =n\", .... +nl"'~

C'O"", OX", (.,)'nr
( 10)

It should be pointed out that for crack front element the variation of ~J' the area of
the clement has to be taken into account when calculating oHdcc5am' The calculation of H'i
usually involves the evaluation of three different integrals over the jth element whose nodes
will be denoted by xo, xp and xq . The calculation ofoH i)cc5am for these integrals is discussed
next.

When i of. j, i.e. when the collocation point Xi is not in the jth element. H'i is usually
calculated by a two-dimensional numerical integration scheme, which has the general form:
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(11 )

where A is the area of the element and B, are the integration weights. The integr~1110n pOInts
are determined from the nodal points x, . .\. and .\( of the element through a linear relation.
x, = Ldx ,. '\" .\). The collocation points are similarly related to the mxks of the (th
element through x, = C,lx..,.."r". x",).

The derivative of H'I with respect to (iu", has the form

( 12)

where the term ('11(1', ) (\)u", is produced by the change of distance between the integration
point x, and the crack front. while x, remains unchanged. It appears that only when the
crack front node x"' coincides with one of the three nodes 1',.\,.• .\" that the terms associ;\kd
with (cL, (',iu", and (c .. I(.\". '\("\'1) (\iu", exist. The s~lme argument applies to ("(., ,',iu",.

When i = j. i.e. when the coll(lcation point .\, lies within the jth ekment. where the
integration is t() he carried out. then the integral is singular and is calculated hy the sum of
the: following three integrals:

1/'1 = 1f.... CI, \,)11(\) d.1 == 1r~f...'('\· x,) - f..."(X.\,l!W(\) dA

+!'.v.J'· f.... '(\..I,l[H'(.\)-H(.\,)jdA+F.I'.H(.\,l I f..."(\.,\ld.1. (I.,)
.\, '"",.\

whe:n: f..." is the: singular part of the kernel fune:tioll: !'.V. and 1".1'. indicak Cauchy principal
value inkgral and tinite part integral. respectively. The two-dimensional principal v~t1ue:

integral is evaluated by a numerical formula. such as the one given hy Theocaris c( 1/1.
(10:-;0) :

) J' 11(1'.\,)I.V. ,d.·(
r'.\ \

' lIt r, Ii)
!'.V. : d.·(

r.,\

( I~)

where 11(1'.\',) = r: f..."(y, X,)[H'(X) - H(X)]: .'/, and B, arc the weights and I', the abs<.:issae: r
is the distance between the integration points and the collocation point. and R is the distalll:e
of .\', from the boundary of the clement. The quantity Ii, is usually reLlted tll the positillns
of the nodes of the dement. For inSide dements. the cr~lck front advani.:e wdl ~dl'cet the
variation of the above Cauchy principal value integral only through the variation 01' H'!.\)
and H'!.\',). ;lnd the cllculation of the derivatives of the integral with respei.:t to ,iu is
straightforward. However, nack fnlllt eleme:nts which have one or two nodes on the crack
front must be treated with care. When dill'erentiating the above eljuation with rcspect to

,iu",. all the efl'ccts of the displacement of the nodal points on the position of .\', and on R
and Ii,. directly as well as through the variation of .\',. in addition to the: variation of 11'(.1').

should he taken into account. which makes the resulting formulae i.:(ll1lplii.:ated. Due to
their length and complexity they ;lre not included in this papn.

The tinite part integral generally has a closed form (Lin and Keel'. 11.)'11,7), whii.:h depends
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on the position of the nodes of the element as well as that of the collocation point:

F.P.Ir(x,) i K'(x. x,) dA = II'(x,)F(x". xp• x q• x,).
~,

2739

( 15)

The differentiation of the finite part integral with respect to positions of the collocation
points as well as the nodal points is performed by differentiating the right-hand side of the
equation. The resulting formulae are given in the Appendix.

For the application to crack growth problems. it is desired to obtain an equation which
gives a relation between the crack front advance and the resulting changes in the stress
intensity factor. By performing matrix manipulation and incorporating eqn (4) this equation
is readily derived from eqn (8) as:

AI/()(/, = (iK,. I = 1.2..... At. ( (6)

where .H is the total number of the crack front elements. In deriving eqn (16). (ip is taken

to be zero in eqn (8). Hence ()K in the above equation is solely produced by the crack
advance. The variation of stress intensity factor caused by the variation of the load is solved
from eqn (8) by letting ()(/ = o.

Equation (16) can be used in a variety of ways. The resulting changes in stress intensity
factor due to a given crack front advance (ia can be calculated. or conversely. the unknown
(iii which results in a required variation in stress intensity factor. (iK. can be determined.
Fquation (16) can also be employed to solve problems having mixed unknowns. i.e. at some
points on the crack front (iK is prescrihed and at the remaining points (ia is specified, such
as arc encountl.:rl.:d in the prohlem of erack growth hetween harriers or ohstacles.

Fqu~ltion (16) is solved hy incorporating the fraclurl.: criterion K ~ K, as an inequality

btllindary condition on the unknowns.
,,"or crack front dements:

()K = 0, ()a:,t. 0 ifK = K,;

i5K 01- 0, (ia = () ifK < K,. ( 17)

where K, is the local fracture toughness of the material.
For a gener~t1 triangulation mesh scheml.:, the total number of crack front elements

exceeds thl.: numba of crack front nodes. In such cases. eqn (16) is an overdetermined
system of algebraic equations, which is solved as a standard least squares problem as
follows: find the solution i5a which minimizes the normal of the residual: II Ai5(/ - c5K11
(Bertero L'l £1/., 19S5).

It is possible to prescribe only 15K for those crack front elements which have an edge
on the crat.:k front. in order to keep the number of equations equal to the number of the
unknown t.:rat.:k front node displacements. However. it is observed in such cases that a small
differelH:e in the prescribed i5K may result in a large fluctuation in the solution c5a, which
rclkt.:ts thl.: unstable charactt:r generally associated with the solution of inverse problems.
in which tht: geometry of a problem is to bt: determined from known information on
the strt:ss fidd. By prescribing i5K for all crack front elements, more restrictions arc
imposed on the unknown crack front node advance. which makes the resulting solution
stahle.

With the solved unknowns (ill. ()(~Ii) and (if\." from eqns (X) and (16) the new crack

front is detl.:rmined and the crack opening displacement ~1/ and the stress intensity factor
K arc updated for the new crack configuration to which the above analysis can then bt:
rcpt:atcd. Sincl.: only first ordt:r perturbation is considered in egn (8). each step of the crack
advance has to be kept sutllciently small to ensure the accuracy of the result. However, as
tht: perturbation can be repeated indefinitely by successively updating the crack geometry
and the corresponding crack opening displacement and the stress intensity factor, this



X. II and L. M. KEER

method can be used to analyse arbitrarily large deformations of the crack geometry. which
simulates the crack growth process.

In the ~lnalysis eqn (2) is used to calculate the crack opening displacement .111 and the
stress intensity factor K for the initial crack geometry. After a numba of perturbation steps
eqn (2) may be used again to calculate .1/1 and K of the perturbed cr~l(k in order to prevent
the possibk accumulation of errors in the perturbation process.

The solution procedure is described here only for plane crack growth problems with
mode I stress intensity factor for the illustration of this method. Since the kernel function
and the weight function are not specified in the equations. the ones derived here an: general
in form and suitable for various mode I crack problems. For mi.xed mode problems. since
the intt:gral equations are well established (Lee L'! al.. 1987: Hanson el ul., 19S91. the
paturbation equation can be derived by the same procedure although the resulting forrnub:
will be nwre complicated. The only difkrence between the mixed mode crack and the mode
I crack is the modification of eqn (17) to the following:

,iE = n. ,ia F- () ifE = Ec :

,iE F- O. cia = () ifE < Ec • (I t')

where til;· is the variation of energy release rate which can be evaluated from the variation
ofstn:ss int\:nsity factors. For lirst order perturbation analysis a linear relatillll between liE
and the variation of stress intensity factors til'I' Mo,:" and C)A:'III can be derivcd. which IS

incorpllrated with the linear equation (I (,) to determine the unkl1l1wn crack front node
;,dv;lnce.

.\1'1'1.I( 'AIIONS

In this section the perturbation method is illustrated by e;t1culating the yield /llne
growth of a Dugdale-type crack under ;In increasing tensile load. The boul1lbry conditions
applied here arc related for simplicity to the tensile yield stress alone r;lther than the
maximum shear stress (Keel' and Mura. 19(5). The Dugdale model was proposed to deal
with the problem of inlinite stress at the crack tip involved in the elastic solution. Ineiden
t;t11y, this stress singularity d,les not present any dillieulty for the sLllution of either the
boundary element equation. eqn (2), or the perturbation equation un, derived from it. for
the unknown function in these equations is the crack opening dispbeelllent. which is tinite
at the edge of the crack.

[n pobr coordinates the initial planar crack shape is specified by r = RI(IJ). which
upon loading is extended by a yield lOne with front r = R:(I)). The loading state for the
area r:::; R I (II) is assumed to arise from a combination ofa uniform tensile stress a" and a
stress having a linear variation. al.ria. i.e. p = a,,+a1x!a, where a is a characteristic length
of the crack geometry. The load in the yield lone R1(0) :::; r :::; R:(IJ) is the sum 01' the loads
a", IT Ix;a and the yield stress ay: p = -ay + IT II + a Ix'a. The fracture criterion at the
fictitious crack front r = R:(I)) is that the stress intensity factor should be equal to zero.

A:' = n.
For a penny-shaped crack with R I == a. R: == h under uniform load (IT I = 0). there

exists an analytical solution (Tada c! aI., 1985) and the yield zone is specified by the

equation:

( \9)

To our knowledge there is still not an estahlished method to determine the yield lOne of
Dugdale type cracks for general crack shapes and loading conditions.

The circular crack of unit radius: R I == I subjected to loads having a linear variation
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as specified above with a = I is considered first. The fictitious crack front is no longer
circular and will be computed by tht: perturbation proct:dure dt:scribed in this paper.

The perturbation is started from an initial circular fictitious crack front R,(O) == C for
which the stress intensity factor A(I}) -# O. The crack front displacement Ja at each step is
determined by solving eqn (16) where (jl\, is specified as - "1.A,. The value for :x is chosen
such that the maximum node displacement at each step is less than 0.03 to ensure the
accuracy. After sen:ral perturbation steps. the stress intensity factor is reduced to such a
level that it is approximately zero. considering the error associated with the solution of the
original boundary element equation. In the present computation A < 0.008 is considered
sulIkiently small to be considt:rt:d zt:ro. At this stage the fictitious crack front is considered
to ha ve been found.

At the next stage. the uniform load iT" is allowed to increase. forcing the yield zone to
grow. Suppose that the stress intensity t~lctor produced solely by a" without other loads
present is A". which can be solved from eqn (2). The increment 6iT" in the uniform load
will cause the stress intensity factor to increase by the amount Ao6a,,/iTo. The advance of
the crack front (j(l caused by the increment of the uniform load is solved from eqn (16) by
prescribing SA as -A"6r;,,i(jjJ. thus ensuring that the stress intensity factor remains
unchanged after the growth. At each step the increment in the uniform load 6iTo is chosen
such that the maximum node displacement is less than O.!B.

Numerical results for two dil1'crent linear load magnitudes (jl arc displayed in Figs 1
J. where the unill.)rm load iT" and the linear variation load iT I is normalized by the yield
stress iT,. which is of unit magnitude. In Fig. 3 the curve representing the analytical solution
is ohtained from eqn (1\). It can he seen that the nUlllerical results (1T 1 = 0) agn:e well with
thl.: known analytical'ollition.

In Figs I and 2 (also in Figs 4 and 5). where heeause or the symmetry only the upper
hall\lfthcl.:rad gellml.:try is shown. the thicker solid line represents the real crack front while
the other curves give the fictitious crack front at dill'crent stages ofgrowth. corresponding to
an increasing uniform stress level. Figure (3) shows the growth of the yield zone width at
IJ -= 0 (x > 0, Y -= 0) and () -= IT (x < 0, Y = 0) fl.)r difl'crent magnitudes of linear variation
of strl.:ss levels. It is ohserved from these ligures that due to the linear variation of stress
the yield zonl.: at IJ = 0 grows much faster than that at (} = rr. This phenomenon becomes
more significant as the magnilUde of the linear stress variation iT I increases.

The second case to be considered is the growth of the yield zone of a crack initially of
elliptical shape suhjected to the uniform tensile load only. i.e. ITj = O. Considering the
distribution of stress intensity raetor around an elliptical crack, the growth of a yield zone

a,l ay=O. 05

Y2,-------------------------------,

Crack fronl

Yield zone fronts corresponding to load levevls of/ay = 0.335. 0.535. 0.639. 0.698.
0.743.0.771.0.793.0.811.0.822.0.831.0.839 and 0.843 respectively

·1 o 2 3

X

Fig. 1. Gmwlh of yield zone of Dugd;llc-type crack subjected lo linear variation load.



X LI .. nJ L \1 KlI K

crt I cry = O. I

y 2,-------------------------------,

Crack front
Yield zone fronts corresponding to load levels cr<Jcry = 0.363. 0.526. 0.610. 0.661.

0.697.0.719.0.736.0.746.0.753 and 0.758 respectively

0+---....
·2 ., o 2 J

X

should e\entually he alnwst cin:ular. The real crack front IS specilied hy x= (/ cos II .
.1' = h sin II. ami the yield lone is to he determined. The perturhation procedure to sol\\.:
this rroblem is simdar to th~lt for tlte lirst case :Ind hegins fronl a lictitious cr~lck front:
\" = (a t- c) CIlS n. \ = (h +;:) sin II. Aftn the actual lictltious crack front is fOllnd for tlte
initi~d uniform tensde load k\el. (Til is increased. The results I)f the corresponding growth
of thl' yield 10m: are pn.:sentClI in hgs -l X. where the m:llor sellli-:I\IS II is equal to I.

hgures -l alld 5 show the gradu:d ~Id\ance of the: yield Illne front ~ICClllllp~lnYlng the
increase Ilf thl' uniform load fill' cracks Ill' elliptical shape With the ratio of lllirwr to major
semi-axis h,"a elju:i1 to O.S and (Ul. respectively. The r:ltio of the lll:lximulll 10 minimum
stress intensity factor ~i1ong the elliptiGiI cr-.lck front incre:lSes With the decrease or the ratio
h a. Numerical results disrby the I"cature that the liditillus crack hecllllles more circular as
Gin he scen in Figs -l X. By cOlllparing hgs (J. 7 and x, it is dC:lr that when the ratio h (/
hecollles smaller the dilkrence hetween the width or the yield /\lne at II = 0 and n:2 is

2.------------------~,____.,.......,

a 0 0 =0.05.9=0

..
r::

'"N

o oJ!Oy=O.O

a ot!cry=O.05.8=7t

o oJoy=0.1.9=1t

o o.joy=O.1.9=0

1.00.4 0.6 0.8

Tensile Load 00 I Oy

0.2
o~~~~

0.0

Fig .t Cjrnwth of :--idd 70111.: width 'oS incn::lsing tl.:nsik In:ld
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y 4 ......----------------------------,

3

2

o-+--J-L+...J....,.J-y.-.L.,...l-...lf--~~-~~I..-l-,J......J...,...L-l..-J__',,...J_...J,...__l

·4 ·3 ·2 ·1 0 2 3 4

Crack from X
Yield zone fronts corresponding to load levels afiay = 0.400. 0.720. 0.832.

0.889.0.919.0.940.0.953.0.963.0.969 and 0.975 respectively

Ellipses that coincide with yield lOne fronts at 6"'0. rt/2, It and 3rt/2

Fi~. 4. Gnl\vth "f yidd mne (,f dliptical Du~dalc-lypecrack.

greater. The dilh:rem:e also increases with the growth of the yield zone or the huild up of
the uniform tensile load. (The two curves in Figs 6X seem to merge as IT" increascs.
Howcver. thc dilkrcnce hetweel1 the two curves at a certain uniform load level is actually
increasing.)

The dashed lines in Figs 4 and 5 represent the ellipses that coincide with the fictitious
crack fronts at lJ = 0, nil. nand 3nj"2. It is noted that the dilkrence hetween the fictitious
crack front and the corresponding ellipse is very small compared to the size of the yield
zone. This ohservation raises the question of whether the fictitious crack front of elliptical
Dugdale model cracks is still of elliptical shape. Although this point cannot he judged by
the results of numerie;t1 analysis because there arc unavoidable sm;dl errors. it C;1I1 be
concluded from the results that an ellipse that gradually approaches a circle is at least a
good approximation of, if not the exact, shape of the fictitious crack front of elliptical
DugJale cracks.

It should be pointed out here that the prescribed load condition in the yield zone

y 4,.------------------------ ~

3

2

4

X

·3 ·2 ·1 0 2 3

Crack front

Yield zone fronts com:sponding to load levels <1(}/ay - 0.421. 0.742. 0.847.

0.899.0.929.0.947.0.959.0.967.0.973 and 0.977 respectively
Ellipses that coincide with yield mne fronts at 6-0. Ita. It and 37t12

O+-_..--I.-+.........-4--<L.-..t........-4-..L...J'f- -..--...--¥-.L..+-...L-+-J--+......I..4-.1..-.......-I
·4

Fig. 5. Growth of yield zone of elliptical Dugdale-type crack.
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EUiptical Crack b I. 0.3

3-r--------------------....,

~

"Q

~ 2
...
c
0
N
"Q

.~..

1.00.80.60.4
0+----..--,----..--..,----.--..,---.-----1

0.2

Tensile load O o /Oy

implies till: yidd conditiun rT. = rT}. Although this simpk modd has heen adopted in many
works done so rar on three-dimensiona I I)ugd~lk-lype (rack prohklllS, a more strict analysis
or this kind 01" prohlem should incorror~lte sOll1e est~lhlished yidd condition 1'01' the plastic
zone such as the Tresca yield condition (Ken and M ur;l, 19(5). Their results show that. in
contrast to eqn (19), the rdation hetween the width or the yidd lone and the applied load
depends on the Poisson's ratio or the makrial. Since the goal or the present paper was the
demonstration or a direct method ror calculation or crack growth, such cases arc reserved
I'LlI' ruture investigations.

Elliptical Crack b I a = 0.6

3~---------------------,

~

:=!,
2~..

c
0

N
"Q
-.;..

1.00.80.60.4
oL~~~-r--~

0.2

Tensile load O o /Oy

Fig. 7 (,rowth pf y"idd lone width 'is illCrt:asin~ tt:nsill: load.
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EUiptical Cr.e.t It I • .. 0.4

3-.--------------------....

.JI:,

i
~ 2..
c:
<:>
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":i
>0

1.00.8

cro/cry

0.6

Tensil~ Load

0.4
o-i---.--~=::::=;:::::=___r_-.......-_J
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Fig. K. Growth of yield !(lne width vs increasing tensile 10'ld.
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,-\PPE:-';DIX

For mode I crack problems. the singular part of th~ k~rncl holS th~ form.

K'(x.x"J
I'

J,,(I-v) I ... I,--x,,):-'-(\'-I',)

I'
.1::(1-1') ii.i·

In this appendi~ we give th~ formula~ to calculate the derlvativc; of thc limte part mtegral '-'Ith respcct to
the positions of the collocation pomt and the nt1dal POintS. The finitc part integral is in the form

" I
f = F.P. J Rid.~. 1:\21

where the intgration is over the triangubr clel11ent of nodcs ',." ;lnd " with coll<lcation p<,int at '". By chllllsing
a local (,/. ~) coordinate with the origin at '" and the " a\is p;ILdlcl to "':- Lin and Keer (['iS7) have shown
that

.Ie" , ,,,) I

C;',' ;I;',}Ii,
1..\11

" Ii, "

where

"lll
_.

1'0 ',I. Ii 'I, ~,(,/ , II,)(~ , .. ,,).

The local coordinate (1/,. ~,) of the ith nllde IS related tll lhe gillhalcllll/dlllille (',. 1',) through

'I, I' 'o)cos(}+(y,-!·olsill(}.

where

~, = • I" - <olsinil+(y, 1'0)CllS(}. (:\5 )

sin () =

Clh () =

y~ -)'1

x~ -XI

\, (."" ,,)' +1.1, -.II)'
(.-\ 7)

The derivatives of f with respect to Yo. \,. " and, \ have the fllrm .

,'f
,

U: (',;, ,'f ,»\' +i": r, ,- , ' -, (1.\', 1;'1, l'}'I/

(',,: (,:. /"1. 1',1. (~I f~1

In the above equations. -, .• >" •• 'and. 'arc calcubted f/lll11 ( ..\.1 I - (.-\ 7) whereas. _ and. arc as folhm,
('.t, l'Y! ('X, cy ( .;, ITl,

(:\ III I

(:\ 11.1

(:\ 121
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(AI3)

(AI4)

(AI5)


